Prasad.V.Potluri Siddhartha Institute of Technology, Kanuru, Vijayawada

Engineering Mathematics III (Discrete Mathematical Structures) (Common with CSE)

Course Code	19BS1302	Year	II	Semester	Ι
Course Category	Basic Sciences	Branch	IT	Course Type	Theory
Credits	3	L-T-P	3-0-0	Prerequisites	Basic Maths they studied at school level
Continuous Internal Evaluation	30	Semester End Evaluation	70	Total Marks	100

Upon	Course Outcomes successful completion of the course, the student will be able to	Blooms Taxonomy Level
C01	Interpret the logical sentences using connectives and predicates.	L2
CO2	Apply rules of inference and methods of proof on Mathematical Logic and Predicate Calculus.	L3
CO3	Apply recurrence relations to solve problems in different domains.	L3
CO4	Construct Hasse diagram and various lattices from Partial Ordered Sets.	L3
CO5	Apply the concepts of trees and graphs for solving problems.	L3

Contr correl									t of Pı	rogram	Outcor	nes & S	Strength	n of
	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2
CO1	3	3	1										2	
CO2	3	3												
CO3	3	2	2										2	
CO4	3	2	1										2	
CO5	3	3	2										2	

	Syllabus					
Unit No.	Contents					
I	 Mathematical Logic: Introduction-Statements and Notations- Connectives-Statement formulas and Truth Tables. Normal Forms: Disjunctive Normal Forms (DNF), Conjunctive Normal Forms (CNF), Principal of Disjunctive Normal Forms (PDNF), Principal of Conjunctive Normal Forms (PCNF). 	CO1				
п	 Theory of Inference for Statement Calculus: Validity using Truth Tables-Rules of Inference – Consistency of Premises and Indirect Method Proof Predicate calculus: Introduction to Predicates - Statement functions, Variable and Quantifiers- Predicate Formulas-Free and Bound Variables-Universe of Discourse. 	CO2				
III	Recurrence Relations -The Method of Characteristic Roots-Solutions in Inhomogeneous Recurrence Relation.	CO3				
IV	Relations and Directed Graphs -Special Properties of Binary Relations- Equivalence Relations- Ordering Relations, Lattices, and Enumerations- Operations on Relations- Paths and Closures-Directed Graphs and Adjacency Matrices	CO4,CO5				
V	Graphs- Basic Concepts- Isomorphism's and Sub graphs-Trees and Their Properties - Spanning Trees-Planar Graphs-Euler's Formula- Multigraphs and Euler Circuits-Hamiltonian Graphs- Chromatic Numbers.	CO5				

Learning Resources
Text Books
1. Discrete Mathematical Structures with Applications to Computer Science, J P Trembly
and R Manohar, 1988, McGraw-Hill (Unit-I,II)
2. Discrete Mathematics for Computer Scientists & Mathematicians, Joe L. Mott. Abraham
Kandel and Theodore P. Baker, Second Edition, 2017, PHI. (Unit-III, IV, V)
References
1. Discrete Mathematics and its Applications, Kenneth H. Rosen, Seventh Edition, 2017,
McGraw-Hill.
e-Resources & other digital material
1. https://www.geeksforgeeks.org/engineering-mathematics-tutorials/
2. https://www.tutorialspoint.com/discrete_mathematics/index.htm

- 3. http://www.alas.matf.bg.ac.rs/~mi10164/Materijali/DS.pdf
- 4. https://nptel.ac.in/courses/111107058/